Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 271: 115990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38262090

RESUMEN

Improper disposal practices have caused environmental disruptions, possessing by heavy metal ions and radioactive elements in water and soil, where the innovative and sustainable remediation strategies are significantly imperative in last few decades. Microbially induced carbonate precipitation (MICP) has emerged as a pioneering technology for remediating contaminated soil and water. Generally, MICP employs urease-producing microorganisms to decompose urea (NH2CONH2) into ammonium (NH4+and carbon dioxide (CO2), thereby increasing pH levels and inducing carbonate precipitation (CO32-), and effectively removing remove contaminants. Nonetheless, the intricate mechanism underlying heavy metal mineralization poses a significant challenge, constraining its application in contaminants engineering, particularly in the context of prolonged heavy metal leaching over time and its efficacy in adverse environmental conditions. This review provides a comprehensive idea of recent development of MICP and its application in environmental engineering, examining metabolic pathways, mineral precipitation mechanisms, and environmental factors as well as providing future perspectives for commercial utilization. The use of ureolytic bacteria in MICP demonstrates cost-efficiency, environmental compatibility, and successful pollutant abatement over tradition bioremediation techniques, and bio-synthesis of nanoparticles. limitations such as large-scale application, elevated Ca2+levels in groundwater, and gradual contaminant release need to be overcome. The possible future research directions for MICP technology, emphasizing its potential in conventional remediation, CO2 sequestration, bio-material synthesis, and its role in reducing environmental impact for long-term economic benefits.


Asunto(s)
Elementos Radiactivos , Metales Pesados , Suelo/química , Agua , Dióxido de Carbono/metabolismo , Metales Pesados/metabolismo , Carbonatos , Carbonato de Calcio/química , Precipitación Química
2.
Biomater Sci ; 12(2): 453-467, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38059526

RESUMEN

The size of drug carriers strongly affects their biodistribution, tissue penetration, and cellular uptake in vivo. As a result, when such carriers are loaded with therapeutic compounds, their size can influence the treatment outcomes. For internal α-radionuclide therapy, the carrier size is particularly important, because short-range α-emitters should be delivered to tumor volumes at a high dose rate without any side effects, i.e. off-target irradiation and toxicity. In this work, we aim to evaluate and compare the therapeutic efficiency of calcium carbonate (CaCO3) microparticles (MPs, >2 µm) and nanoparticles (NPs, <100 nm) labeled with radium-223 (223Ra) for internal α-radionuclide therapy against 4T1 breast cancer. To do this, we comprehensively study the internalization and penetration efficiency of these MPs and NPs, using 2D and 3D cell cultures. For further therapeutic tests, we develop and modify a chelator-free method for radiolabeling of CaCO3 MPs and NPs with 223Ra, improving their radiolabeling efficiency (>97%) and radiochemical stability (>97%). After intratumoral injection of 223Ra-labeled MPs and NPs, we demonstrate their different therapeutic efficiencies against a 4T1 tumor. In particular, 223Ra-labeled NPs show a tumor inhibition of approximately 85%, which is higher compared to 60% for 223Ra-labeled MPs. As a result, we can conclude that 223Ra-labeled NPs have a more suitable biodistribution within 4T1 tumors compared to 223Ra-labeled MPs. Thus, our study reveals that 223Ra-labeled CaCO3 NPs are highly promising for internal α-radionuclide therapy.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Carbonato de Calcio/química , Distribución Tisular , Portadores de Fármacos/química , Nanopartículas/química , Radioisótopos/uso terapéutico
3.
Small ; 20(5): e2304183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759411

RESUMEN

Mollusks, as well as many other living organisms, have the ability to shape mineral crystals into unconventional morphologies and to assemble them into complex functional mineral-organic structures, an observation that inspired tremendous research efforts in scientific and technological domains. Despite these, a biochemical toolkit that accounts for the formation of the vast variety of the observed mineral morphologies cannot be identified yet. Herein, phase-field modeling of molluscan nacre formation, an intensively studied biomineralization process, is used to identify key physical parameters that govern mineral morphogenesis. Manipulating such parameters, various nacre properties ranging from the morphology of a single mineral building block to that of the entire nacreous assembly are reproduced. The results support the hypothesis that the control over mineral morphogenesis in mineralized tissues happens via regulating the physico-chemical environment, in which biomineralization occurs: the organic content manipulates the geometric and thermodynamic boundary conditions, which in turn, determine the process of growth and the form of the biomineral phase. The approach developed here has the potential of providing explicit guidelines for the morphogenetic control of synthetically formed composite materials.


Asunto(s)
Nácar , Animales , Nácar/química , Minerales/química , Moluscos , Biomineralización , Fenómenos Físicos , Carbonato de Calcio/química
4.
J Environ Manage ; 351: 119875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157581

RESUMEN

Phosphorus (P) removal from urban wastewater is increasingly relevant in the wastewater treatment sector. The present work aims to contribute to the study of the adsorption process as a P removal technology. Biogenic calcium carbonate from industrial eggshell waste prepared by milling and calcination was used as an adsorbent. Batch adsorption experiments were conducted using real wastewater with 40 mg P/L (orthophosphate), original pH 7.33, under stirring conditions (100 rpm). The adsorbent was characterized using SEM-EDS, XRD, and FTIR-ATR before and after adsorption. From an initial screening of calcination times (15, 30, 60, and 120 min) and considering a balance between P removal and energy saving, the adsorbent selected was eggshell calcined at 700 °C for 60 min. The Langmuir isotherms describe the experimental data with a maximum adsorption capacity of 4.57 mg P/g at 25 °C. The adsorption process reached equilibrium within 120 min for different dosages (5, 10, and 20 g/L at 25 °C). Batch experiments showed that SO42-, at a concentration of 2689 mg/L reduced the P adsorption selectivity for dosages ≤10 g/L at 25 °C. Characterization of the loaded adsorbent shows that P adsorption from real wastewater is mostly electrostatic attraction, with the contribution of ligand exchange and microprecipitation. The adsorption capacity and behavior of the selected adsorbent seem promising for P removal from urban wastewater compared with other low-cost adsorbents.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Fósforo/química , Adsorción , Carbonato de Calcio/química , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Residuos Industriales
5.
J Mater Chem B ; 11(42): 10174-10188, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850271

RESUMEN

The intricate process of biomineralization, e.g. in sea urchins, involves the precise interplay of highly regulated mineralization proteins and the spatiotemporal coordination achieved through compartmentalization. However, the investigation of biomineralization effector molecules, e.g. proteins, is challenging, due to their very low abundance. Therefore, we investigate the functional mimicry in the bioinspired precipitation of calcium carbonate (CaCO3) with artificial peptides selected from a peptide library by phage display based on peptide-binding to calcite and aragonite, respectively. The structure-directing effects of the identified peptides were compared to those of natural protein mixes isolated from skeletal (test) structures of two sea urchin species (Arbacia lixula and Paracentrotus lividus). The calcium carbonate samples deposited in the absence or presence of peptides were analyzed with a set of complementary techniques with regard to morphology, polymorph, and nanostructural motifs. Remarkably, some of the CaCO3-binding peptides induced morphological features in calcite that appeared similar to those obtained in the presence of the natural protein mixes. Many of the peptides identified as most effective in exerting a structure-directing effect on calcium carbonate crystallization were rich in basic amino acid residues. Hence, our in vitro mineralization study further highlights the important, but often neglected, role of positively charged soluble organic matrices associated with biological and bioinspired CaCO3 deposition.


Asunto(s)
Bacteriófagos , Biomineralización , Animales , Carbonato de Calcio/química , Péptidos/química , Erizos de Mar/metabolismo , Bacteriófagos/metabolismo
6.
Environ Microbiol Rep ; 15(6): 797-808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814459

RESUMEN

The process of microbially induced carbonate precipitation (MICP) is known to effectively improve engineering properties of building materials and so does silk fibroin (SF). Thus, in this study, an attempt was taken to see the improvement in sand, that is, basic building material coupled with MICP and SF. Urease producing Bacillus megaterium was utilized for MICP in Nutri-Calci medium. To improve the strength of SF itself in bacterial solution, it was cross-linked with genipin at the optimized concentration of 3.12 mg/mL. The Fourier transform infrared (FTIR) spectra confirmed the crosslinking of SF with genipin in bacterial solution. In order to understand how such cross-linking can improve engineering properties, sand moulds of 50 mm3 dimension were prepared that resulted in 35% and 55% more compressive strength than the one prepared with bacterial solution with SF and bacterial solution only, respectively with higher calcite content in former one. The FTIR, SEM, x-ray powder diffraction spectrometry and x-ray photoelectron spectroscopy analyses confirmed higher biomineral precipitation in bacterial solution coupled with genipin cross-linked SF. As the process of MICP is proven to replace cement partially from concrete without negatively influence mechanical properties, SF cross-linked with genipin can provide additional significance in developing low-carbon cement-based composites.


Asunto(s)
Fibroínas , Fibroínas/química , Arena , Carbonato de Calcio/química , Materiales de Construcción , Precipitación Química
7.
Sci Total Environ ; 900: 165823, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37517719

RESUMEN

The method of soil improvement by calcium phosphate precipitation is a novel, environmentally friendly, and non-toxic technique. Such technology provides advantages over ureolytic induced calcite precipitation (UICP), the most popular and widely used method in the field of geotechnical engineering. In this paper, an investigation of the consolidation of fine and coarse sand samples by enzyme induced calcium phosphate precipitation (EICPP) was carried out. Tuna bones were used as an alternative source of calcium and phosphorus ions, as one of the most popular fish species in Japan and the main source of food industry waste. Unconfined compressive strength (UCS) of the samples after 21 days of daily injection of the solution showed an increase in strength up to 6,05 MPa in fine and up to 4,3 MPa in coarse sand samples. X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (SEM-EDS) analysis were performed to investigate the nature and type of deposition. Analyses confirmed that deposition is composed of brushite with needle-like crystals in the case of Toyoura sand and flower-like crystals in the case of Mikawa sand. SEM-EDS showed a presence of both, calcium, and phosphorus in the precipitate, indicating the presence of calcium phosphate compounds (CPCs). This study reveals that tuna bones are a rich source of calcium and phosphorus for EICPP, which results in a strengthening of silicate soil up to 3.4-6.05 MPa and is able to reduce ammonia emissions by 85.7 % - 97.5 % compared to UICP.


Asunto(s)
Calcio , Suelo , Calcio/análisis , Arena , Microscopía Electrónica de Rastreo , Fosfatos de Calcio/química , Compuestos de Calcio/química , Carbonato de Calcio/química , Fósforo/análisis
8.
Environ Sci Technol ; 57(28): 10348-10360, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37417589

RESUMEN

In this article, the speciation and behavior of anthropogenic metallic uranium deposited on natural soil are approached by combining EXAFS (extended X-ray absorption fine structure) and TRLFS (time-resolved laser-induced fluorescence spectroscopy). First, uranium (uranyl) speciation was determined along the vertical profile of the soil and bedrock by linear combination fitting of the EXAFS spectra. It shows that uranium migration is strongly limited by the sorption reaction onto soil and rock constituents, mainly mineral carbonates and organic matter. Second, uranium sorption isotherms were established for calcite, chalk, and chalky soil materials along with EXAFS and TRLFS analysis. The presence of at least two adsorption complexes of uranyl onto carbonate materials (calcite) could be inferred from TRLFS. The first uranyl tricarbonate complex has a liebigite-type structure and is dominant for low loads on the carbonate surface (<10 mgU/kg(rock)). The second uranyl complex is incorporated into the calcite for intermediate (∼10 to 100 mgU/kg(rock)) to high (high: >100 mgU/kg(rock)) loads. Finally, the presence of a uranium-humic substance complex in subsurface soil materials was underlined in the EXAFS analysis by the occurrence of both monodentate and bidentate carboxylate (or/and carbonate) functions and confirmed by sorption isotherms in the presence of humic acid. This observation is of particular interest since humic substances may be mobilized from soil, potentially enhancing uranium migration under colloidal form.


Asunto(s)
Uranio , Uranio/química , Suelo , Carbonato de Calcio/química , Carbonatos/química , Espectrometría de Fluorescencia/métodos , Sustancias Húmicas
9.
Micron ; 164: 103385, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413960

RESUMEN

Petroleum is, at present, still the main energy source in the world. Most of it is stored in carbonate rock reservoirs with complex inner structures and pores ranging from nanometers to dozens of meters. Knowing the rock's entire pore network is indispensable to perform an effective petroleum extraction. X-ray microtomography, a technique that generates images from samples' inner structure and a powerful tool to evaluate the 3D pore network, was employed in this scientific research to scan four kinds of carbonate rocks (Dolomite, Desert Pink, Indiana, and Winterset) in five different pore scales (90 µm, 13 µm, 5.5 µm, 1.0 µm, and 65 nm). A multi-scale approach based on the number of pores was applied to integrate different pore scale data and assess the total porosity as well as each sample pore size distribution. The results were compared to classical Mercury Injection Capillary Pressure (MICP) results, demonstrating a fair agreement in total porosity in the two samples. Multi-scale porosity of the Dolomite sample was 17.7% against (18.9 ± 2.1)% of the MICP porosity. The Winterset sample had multi-scale porosity of 26.2%, while MICP porosity was (31.2 ± 0.6)%. Pore size distribution results were rather satisfactory, especially when overlapping regions in different scales were compared. In general, the multi-scale approach showed good potential. It still needs further evaluation to fine-tune some procedures and fluid flow simulation tests but might become a useful tool to study reservoir rocks with a wide range of pore sizes, such as carbonate rocks.


Asunto(s)
Carbonato de Calcio , Petróleo , Porosidad , Carbonato de Calcio/química , Carbonatos/química
10.
Pest Manag Sci ; 79(4): 1604-1614, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36550686

RESUMEN

BACKGROUND: In this work, natural club moss (Lycopodium clavatum, LC) spores with a porous surface morphology and highly uniform size distribution were engineered into controlled-release microvehicles for pesticide delivery. As a proof of concept, a widely used fungicide, fluazinam (FLU), was successfully loaded into LC spores and then modified with different amounts of CaCO3 (CaC) to extend the efficacy duration of FLU. Significantly, as the control target of FLU, clubroot disease is a worldwide destructive disease of cruciferous crops, and its development is favored by acidic soils and can be suppressed at high Ca concentrations. RESULTS: Fabricated FLU@LC-CaC microcapsules, FLU loading and CaCO3 deposition were systematically characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The as-prepared FLU@LC-CaC microcapsules showed sustained-release behaviors and were potentially able to supplement the Ca concentration in acidic environments. This approach synergistically enhanced in vivo bioactivity for the on-demand control of clubroot disease. An in vivo bioassay revealed that the control efficacy of FLU@LC-CaC against clubroot disease in pak choi (Brassica chinensis) (66.4%) was 1.7-fold higher than that of a commercial FLU suspension concentrate (38.2%) over the course of the cultivation period (35 days). CONCLUSIONS: This work provides new ideas not only for developing eco-friendly and scalable microvehicles for pesticide delivery based on natural sporopollen, but also for unconventional research perspectives in on-demand pest management based on their occurrence characteristics. © 2022 Society of Chemical Industry.


Asunto(s)
Plaguicidas , Preparaciones de Acción Retardada , Carbonato de Calcio/química , Cápsulas/química , Microscopía Electrónica de Rastreo
11.
Environ Technol ; 44(2): 226-239, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34383628

RESUMEN

Phosphogypsum (CaSO4) is produced as a waste by-product during phosphoric acid production in the fertilizer industry. Only 15% of worldwide phosphogypsum production is recycled, while 85% is stored in the vicinity of factories as huge piles resulting in environmental and health hazards. An extensively studied biotransformation of phosphogypsum to calcium carbonate or calcite (CaCO3) using sulfate reducing bacteria (SRBs) is a prolonged process and results in the formation of extremely hazardous H2S gas. Here we report for the first time a novel approach for biotransformation of phosphogypsum to CaCO3 using urease producing Lysinibacillus sphaericus strain GUMP2. The strain could effectively transform phosphogypsum to crystalline, bead-shaped CaCO3 precipitates. In a batch reactor with the PG loading rate of 60 g/L, 100% biotransformation was observed within seven days. After calcite recovery, the ammonium sulfate formed in the supernatant was recovered by precipitation. Urease-producing L. sphaericus strain GUMP2 could be used to remove the hazardous phosphogypsum from the environment by converting it to the industrially useful CaCO3 and ammonium sulfate, a valuable agricultural fertilizer. This novel and sustainable approach could be a promising solution for the hazardous phosphogypsum in the phosphoric acid industries.


Asunto(s)
Bacillus , Carbonato de Calcio , Carbonato de Calcio/química , Ureasa , Fertilizantes , Sulfato de Amonio , Fósforo/química , Sulfato de Calcio/química , Biotransformación
12.
PLoS One ; 17(10): e0274084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36227874

RESUMEN

Fossils exposed at the surface are an integral component of the paleontologic record and provide an archive of past life. However, it is widely known that fossils are not stable indefinitely upon exposure to surface conditions such as physical, chemical, and biological processes, and this last phase of taphonomy is poorly understood. Studies regarding the longevity of fossils subject to weathering, such as acidic precipitation, are absent in the literature. The goal of this study was to experimentally determine vertebrate fossil dissolution rates under variable pH conditions in a controlled laboratory setting. It was hypothesized that fossils would dissolve within acidic solutions and do so at an increasing rate when exposed to increasingly acidic solutions. The experiments were conducted on three fossil vertebrae in triplicate in closed reaction vessels at pH 4, 5, and 6. The fossils were completely submerged for 21 days in a tap water solution with the pH adjusted using 0.1N hydrochloric acid (HCl). Fossil dissolution was quantified by changes to: (1) fossil mass; (2) elemental chemistry of water and fossils with inductively coupled plasma mass spectrometry (ICP-MS); (3) fossil mineralogy with X-ray diffraction (XRD); and (4) histologic structures with thin section analyses. All fossils exhibited mass loss, which increased with decreasing pH conditions, and was greatest under pH 4 (477 to 803 mg loss). The elemental analyses with ICP-MS indicated an increase of both calcium (maximum increase of 315 ppm) and phosphorus (increase of 18 ppm) in aqueous solutions with increasing pH and a loss of those same elements from the fossils (maximum loss of 10 ppm Ca and 6 ppm P). XRD revealed loss of gypsum in all post-dissolution samples. Taken together, the results of ICP-MS and XRD suggest dissolution of the primary mineral phases, including hydroxylapatite, and secondary phases, particularly calcite and gypsum, resulting in an estimated mass loss at pH 4 of 23 to 28 mg per day. Thin section analysis showed degradation of both cortical and trabecular bone in all post-dissolution images, demonstrating physical changes to the fossils as a result of water-rock interactions. These findings constitute the first quantitative analysis of fossil dissolution rates and provide insights into this last stage of taphonomy, addressing a largely understudied potential bias in the vertebrate fossil record.


Asunto(s)
Fósiles , Ácido Clorhídrico , Calcio , Carbonato de Calcio/química , Sulfato de Calcio , Durapatita , Concentración de Iones de Hidrógeno , Fósforo , Solubilidad , Agua
13.
Langmuir ; 38(44): 13414-13428, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36279412

RESUMEN

The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by Sporosarcina pasteurii can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.


Asunto(s)
Suelo , Ureasa , Ureasa/metabolismo , Adsorción , Aminoácidos , Cuarzo , Ácido Aspártico , Carbonato de Calcio/química , Carbonatos , Glicina , Alanina , Óxido de Aluminio , Treonina , Glutamatos
14.
Environ Sci Pollut Res Int ; 29(48): 72670-72682, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35614351

RESUMEN

The control of pests in agricultural systems is currently based on the widespread use of pesticides that efficiently control pests but have negative effects on the environment and humans. Thus, several studies have been conducted to develop alternative sustainable ways to control pests in agriculture. The use of semiochemicals presents a good alternative to develop a sustainable tool monitoring and control insect pests in crops areas. The dispensing carriers of semiochemicals are typically made of non-degradable material, often petroleum derivatives such as butyl rubber, that become polluting waste after application. To develop a biodegradable and low-cost dispenser for semiochemicals, particles of CaCO3 and a CaCO3/Kraft lignin composite were synthesized using CO2 bubbling, characterized and evaluated for 30 days as a dispenser of the limonene molecule, which is a common semiochemical in plants and also pheromone component is some insect species, such as the lesser mealworm Alphitobius diaperinus. Furthermore, limonene is volatile molecule that is easy to acquire and low-cost, which makes it an ideal semiochemical to evaluate the potential of the CaCO3 particles and CaCO3/Kraft lignin composite as a semiochemical dispenser for use in agriculture. The pure calcium carbonate I, pure calcium carbonate II, and composite I synthesized particles presented a larger specific surface area than the other composites. All the particles evaluated showed a slow limonene release rate between the 5th and 30th days evaluated, indicating the potential of these materials as pheromone dispensers. The composites with higher specific surface area, calcium carbonate II (19.5 m2/g) and composite I (23.1 m2/g), released a higher level of limonene during the 30 days evaluated.


Asunto(s)
Escarabajos , Plaguicidas , Petróleo , Animales , Carbonato de Calcio/química , Dióxido de Carbono , Productos Agrícolas , Preparaciones de Acción Retardada , Humanos , Insectos , Lignina , Limoneno , Feromonas
15.
PLoS One ; 17(4): e0266415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421143

RESUMEN

We demonstrate that Microbial Induced Calcite Precipitation (MICP) can be utilized for creation of consolidates of Martian Simulant Soil (MSS) and Lunar Simulant Soil (LSS) in the form of a 'brick'. A urease producer bacterium, Sporosarcina pasteurii, was used to induce the MICP process for the both simulant soils. An admixture of guar gum as an organic polymer and NiCl2, as bio- catalyst to enhance urease activity, was introduced to increase the compressive strength of the biologically grown bricks. A casting method was utilized for a slurry consisting of the appropriate simulant soil and microbe; the slurry over a few days consolidated in the form of a 'brick' of the desired shape. In case of MSS, maximum strength of 3.3 MPa was obtained with 10mM NiCl2 and 1% guar gum supplementation whereas in case of LSS maximum strength of 5.65 Mpa was obtained with 1% guar gum supplementation and 10mM NiCl2. MICP mediated consolidation of the simulant soil was confirmed with field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and thermogravimetry (TG). Our work demonstrates a biological approach with an explicit casting method towards manufacturing of consolidated structures using extra-terrestrial regolith simulant; this is a promising route for in situ development of structural elements on the extra-terrestrial habitats.


Asunto(s)
Carbonato de Calcio , Marte , Carbonato de Calcio/química , Precipitación Química , Medio Ambiente Extraterrestre , Suelo , Ureasa
16.
J Sci Food Agric ; 102(2): 740-749, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34173233

RESUMEN

BACKGROUND: The pH adjustment of acidic red soils with lime materials is beneficial for the reduction of phosphorus (P) fixation. However, the reasons for varying levels of P activation after adding different lime materials have not been fully investigated. Therefore, this study examined changes in soil labile P and P forms after phosphate application to calcium carbonate (CaCO3 ) and dolomite amended red soil during a 120-day incubation period. Also change of P sorption properties in the amended soil samples from day 120 were examined through a sorption-desorption experiment. RESULTS: The increase of soil H2 O-P and NaHCO3 -P in the CaCO3 and dolomite amended soil treatments was mainly ascribed to the decline of the NaOH-P. However, when compared with the control treatment after 120 days, soil Olsen-P significantly increased by 34% and 66% in the CaCO3 and dolomite treatments. The Hedley P fractionation results demonstrated that the CaCO3 application caused a notable increase of HCl-P (stable Ca-P), which was 88.4% higher than that in the dolomite treatment. However, the formation of stable P was strongly suppressed in the dolomite treatment due to the presence of magnesium (Mg), which was identified by the negative relationship between M3-Mg and HCl-P. In line with these findings, P sorption-desorption work showed weaker P binding energy in the dolomite treatment relative to the CaCO3 treatment. CONCLUSION: In terms of increasing P availability in red soil, this study suggests that dolomite should be used to substitute CaCO3 in order to reduce the soil P fixation. © 2021 Society of Chemical Industry.


Asunto(s)
Carbonato de Calcio/química , Magnesio/química , Fósforo/química , Suelo/química , Adsorción , Compuestos de Calcio/química , Fertilizantes/análisis , Concentración de Iones de Hidrógeno , Óxidos/química , Fosfatos/química
17.
Nat Commun ; 12(1): 4299, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262038

RESUMEN

Radiofrequency ablation (RFA) is clinically adopted to destruct solid tumors, but is often incapable of completely ablating large tumors and those with multiple metastatic sites. Here we develop a CaCO3-assisted double emulsion method to encapsulate lipoxidase and hemin with poly(lactic-co-glycolic acid) (PLGA) to enhance RFA. We show the HLCaP nanoreactors (NRs) with pH-dependent catalytic capacity can continuously produce cytotoxic lipid radicals via the lipid peroxidation chain reaction using cancer cell debris as the fuel. Upon being fixed inside the residual tumors post RFA, HLCaP NRs exhibit a suppression effect on residual tumors in mice and rabbits by triggering ferroptosis. Moreover, treatment with HLCaP NRs post RFA can prime antitumor immunity to effectively suppress the growth of both residual and metastatic tumors, also in combination with immune checkpoint blockade. This work highlights that tumor-debris-fueled nanoreactors can benefit RFA by inhibiting tumor recurrence and preventing tumor metastasis.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Nanomedicina/métodos , Neoplasias/terapia , Ablación por Radiofrecuencia , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Carbonato de Calcio/química , Carbonato de Calcio/uso terapéutico , Catálisis , Línea Celular Tumoral , Terapia Combinada , Ferroptosis/efectos de los fármacos , Hemina/química , Hemina/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Muerte Celular Inmunogénica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Lipooxigenasa/química , Lipooxigenasa/uso terapéutico , Ratones , Metástasis de la Neoplasia , Neoplasia Residual , Neoplasias/inmunología , Neoplasias/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico , Conejos
18.
J Oleo Sci ; 70(6): 849-854, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34078761

RESUMEN

Calcium is a dynamic mineral. Recent discoveries designate that low intake of calcium generates deficiencies and path to other diseases. Food fortification could play a key role to overcome this problem. To cope with this deficiency problem, jellies were formulated with food-grade calcium salts and chicken eggshell powder. In the present study, three different concentrations of calcium salts, as well as eggshell powder were used to formulate jellies. The results of the sensory evaluation indicated that the two jelly products (A&D) in the current study were suitable for consumers. Results of Atomic Absorption Spectrophotometer revealed Jelly A and jelly D had 151±0.05 ppm and 133±0.06 ppm calcium concentration, respectively. Proximate analysis of Jelly A showed that it has 6.0±0.01% ash, 9.2±0.1% moisture, 0.4±0.01 g crude protein, 82.79±0.001 g crude fiber, and 0.61±0.001 g crude fat, while the jelly D that was made with chicken eggshell powder exhibited 6.0±0.01% ash, 10.1±0.1% moisture, 0.5±0.01 g protein, 84.54±0.01 g crude fiber and 1.61±0.01 g crude fat. Therefore, these two jelly A & D were greatly appreciated among other attributes. In spite of naturally available calcium-rich sources, calcium-fortified jellies can be consumed by individuals who are incapable to take sufficient calcium from their diet.


Asunto(s)
Carbonato de Calcio/química , Gluconato de Calcio/química , Cáscara de Huevo/química , Alimentos Fortificados , Alimentos en Conserva , Animales , Calcio/análisis , Pollos , Alimentos Fortificados/análisis , Alimentos en Conserva/análisis , Humanos , Odorantes , Gusto
19.
J Drug Target ; 29(10): 1094-1101, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33896301

RESUMEN

Intracellular Ca2+ ions as second messenger played key role in cell behaviour, which was often overlooked in traditional antitumor treatment. Disrupting Ca2+ ion homeostasis by Ca2+ overload might switch ions signal from 'regulating' to 'destroying'. Inspired by this, a biomimetic Ca2+ nanogenerator was constructed. Briefly, the curcumin (CUR) was loaded into mesoporous calcium carbonate nanoparticles (MCC NPs), and then coated with platelet (PLT) membrane. Upon reaching tumour cells by PLT membrane-mediated tumour targeting effect, PLT@MCC/CUR would instantaneously decompose in acidic lysosomes, concurrently accompanying with Ca2+ generation and CUR release. The CUR could further facilitate Ca2+ release from endoplasmic reticulum (ER) and inhibit Ca2+ efflux, aggravating Ca2+ overload to disrupt mitochondrial Ca2+ homeostasis for mitochondria apoptosis signalling pathway activation. Interestingly, such effect was ineffective in normal cells, realising the tumour-specific therapeutic therapy. Based on ions interference strategy, PLT@MCC/CUR herein offered synergistic combination of Ca2+ overload therapy and chemotherapy, which would pave the way towards more effective nanotherapeutics.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Carbonato de Calcio/química , Curcumina/farmacología , Nanopartículas , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomimética , Plaquetas/química , Calcio/metabolismo , Curcumina/administración & dosificación , Liberación de Fármacos , Femenino , Homeostasis , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Células RAW 264.7
20.
Nature ; 592(7853): 248-252, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33790469

RESUMEN

The archaeological record of Africa provides the earliest evidence for the emergence of the complex symbolic and technological behaviours that characterize Homo sapiens1-7. The coastal setting of many archaeological sites of the Late Pleistocene epoch, and the abundant shellfish remains recovered from them, has led to a dominant narrative in which modern human origins in southern Africa are intrinsically tied to the coast and marine resources8-12, and behavioural innovations in the interior lag behind. However, stratified Late Pleistocene sites with good preservation and robust chronologies are rare in the interior of southern Africa, and the coastal hypothesis therefore remains untested. Here we show that early human innovations that are similar to those dated to around 105 thousand years ago (ka) in coastal southern Africa existed at around the same time among humans who lived over 600 km inland. We report evidence for the intentional collection of non-utilitarian objects (calcite crystals) and ostrich eggshell from excavations of a stratified rockshelter deposit in the southern Kalahari Basin, which we date by optically stimulated luminescence to around 105 ka. Uranium-thorium dating of relict tufa deposits indicates sporadic periods of substantial volumes of fresh, flowing water; the oldest of these episodes is dated to between 110 and 100 ka and is coeval with the archaeological deposit. Our results suggest that behavioural innovations among humans in the interior of southern Africa did not lag behind those of populations near the coast, and that these innovations may have developed within a wet savannah environment. Models that tie the emergence of behavioural innovations to the exploitation of coastal resources by our species may therefore require revision.


Asunto(s)
Arqueología , Carbonato de Calcio/análisis , Cáscara de Huevo , Pradera , Invenciones/historia , Lluvia , Struthioniformes , África Austral , Animales , Carbonato de Calcio/química , Cuevas , Historia Antigua , Humanos , Magnesio , Torio , Uranio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA